
Definitional Typed Second Order Logic

This is an extension of first order logic with

identity in a Fregean manner; it adds

quantification over predicate symbols, and

stipulate object extensions for typed predicates.

Typed predicates are defined recursively after

rules of formation of typed formulas. It

constitutes a possible salvage for Frege's

project of reducing mathematics to logic.

Notation:

ɛ is a monadic symbol denoting "extension of"

Object symbols shall be denoted by lower case.

Predicate symbols shall be denoted in upper case

Typed predicates shall be denoted by indexed

predicate symbols.

Straight predicate symbols represent Constant

predicates

Italic predicate symbols represent Variables

ranging over Constant predicates of the same

index.

for example: P1 is a variable symbol ranging over

all Constant predicates indexed with 1, so it

ranges over Q1,P1,R1,...., so it can only be

substituted by those.

While P1 represents a particular predicate.

All first order with identity logic formulas has

all predicate symbols in them being constant

predicate symbols.

Formation rules of typed formulas:

Rule 0: Any predicate in a first order formula is

a typed constant predicate symbol.

Rule 1: if Pi is a typed predicate symbol then

ɛPi is a term.

Rule 2: Any first order with identity logic

formula if we index all predicates (except =) in

it with 1 then the resulting formula is a typed

formula.

Example: ∀x. P1(x) → x=ɛP1

Rule 3: Italicing predicate symbols in a typed

formula results in a typed formula.

Example: ∀x. P1(x) → x=ɛP1

is a typed formula.

Rule 4: quantifying over variable predicates of a

typed formula results in a typed formula

so "∃P1. ∀x. P1(x) → x=ɛP1" is a typed formula.

Rule 5: If a formula F is a definitional formula

of predicate Q after a typed formula Gn (Gn has

the highest index of a predicate in it being n),

and if all of those highest indexed predicates

were constant predicates and if Q received the

same index n, then F is a typed formula.

In general F is a definitional formula of

predicate Q after formula G means F is a formula

of the form "∀x. Q(x) ↔ G".

Rule 6: For the same conditions in Rule 5, if any

of the highest indexed predicates in Gn is a

variable predicate symbol, then Q must receive

index n+1 in order for F to be a typed formula.

Examples:

∀x. Qi+1(x) ↔ ¬∃Pi. Pi(ɛPi) ∧ x=ɛPi

∀x. Qi(x) ↔ Pi(x) ∧ ¬Gi(x)

are typed formulas.

Rule 7: a typed predicate symbol (any predicate

symbol in a typed formula) only range over

predicates that hold of OBJECTS only.

Rule 8: if a formula is a typed formula, then ALL

of its sub-formulas are typed!

Rule 9: if P,Q are typed formulas, then P|Q is a

typed formula; where "|" is the Sheffer stroke.

Rule 10: all propositional logic equivalents of

any typed formula are typed formulas.

So for example: " ∀x. ¬ [Qi+1(x) ⊕ (¬∃Pi. Pi(ɛPi)
∧ x=ɛPi)]" is a typed formula.

Now the above rules will recursively form typed

formulas, and typed predicates.

Axiom: if Pi,Qj are typed predicates, then:

ɛPi=ɛQj iff (∀x. Pi(x)↔Qj(x))

Define: x ∈ y iff ∃G. G(x) ∧ y=ɛG

The motivation beyond extending predicates is to

reduce object/predicate/higher predicate

hierarchy into object/predicate dichotomy, thus

enabling Rule 7.

The above system have no mathematical motivation,

it is solely derived by consistency concerns

about second order logic with identity using

purely logically motivated maxims.

The above LOGIC have the ability to interpret

second order arithmetic, thus most of traditional

mathematics can be seen to be traced to logic,

thereby highly motivating Logicism.

Zuhair Al-Johar
26/5/2013

