
Definitional Typed Second Order Logic 

This is an extension of first order logic with 

identity in a Fregean manner; it adds 

quantification over predicate symbols, and 

stipulate object extensions for typed predicates. 

Typed predicates are defined recursively after 

rules of formation of typed formulas. It 

constitutes a possible salvage for Frege's 

project of reducing mathematics to logic. 

 

Notation: 

ɛ is a monadic symbol denoting "extension of" 

Object symbols shall be denoted by lower case. 

 

Predicate symbols shall be denoted in upper case 

 

Typed predicates shall be denoted by indexed 

predicate symbols. 

 

Straight predicate symbols represent Constant 

predicates  

 

Italic predicate symbols represent Variables 

ranging over Constant predicates of the same 

index. 

 

for example: P1 is a variable symbol ranging over 

all Constant predicates indexed with 1, so it 

ranges over Q1,P1,R1,...., so it can only be 

substituted by those. 

 

While P1 represents a particular predicate. 

 

All first order with identity logic formulas has 

all predicate symbols in them being constant 

predicate symbols.  

 

 

 

 

 

 



Formation rules of typed formulas: 

 

Rule 0: Any predicate in a first order formula is 

a typed constant predicate symbol. 

 

Rule 1: if Pi is a typed predicate symbol then 

ɛPi is a term. 

 

Rule 2: Any first order with identity logic 

formula if we index all predicates (except =) in 

it with 1 then the resulting formula is a typed 

formula. 

 

Example: ∀x. P1(x) → x=ɛP1 
 

Rule 3: Italicing predicate symbols in a typed 

formula results in a typed formula. 

 

Example: ∀x. P1(x) → x=ɛP1  
 

is a typed formula. 

 

Rule 4: quantifying over variable predicates of a 

typed formula results in a typed formula 

 

so "∃P1. ∀x. P1(x) → x=ɛP1"  is a typed formula. 
 

Rule 5: If a formula F is a definitional formula 

of predicate Q after a typed formula Gn (Gn has 

the highest index of a predicate in it being n), 

and if all of those highest indexed predicates 

were constant predicates and if Q received the 

same index n, then F is a typed formula.  

 

In general F is a definitional formula of 

predicate Q after formula G means F is a formula 

of the form "∀x. Q(x) ↔ G". 

 

Rule 6: For the same conditions in Rule 5, if any 

of the highest indexed predicates in Gn is a 

variable predicate symbol, then Q must receive 

index n+1 in order for F to be a typed formula. 

 

 

 

 



 

Examples: 

∀x. Qi+1(x) ↔ ¬∃Pi. Pi(ɛPi ) ∧ x=ɛPi 

∀x. Qi(x) ↔  Pi(x) ∧ ¬Gi(x) 
 

are typed formulas. 

 

Rule 7: a typed predicate symbol (any predicate 

symbol in a typed formula) only range over 

predicates that hold of OBJECTS only. 

 

Rule 8: if a formula is a typed formula, then ALL 

of its sub-formulas are typed! 

 

Rule 9: if P,Q are typed formulas, then P|Q is a 

typed formula; where "|" is the Sheffer stroke. 

 

Rule 10: all propositional logic equivalents of 

any typed formula are typed formulas. 

 

So for example: " ∀x. ¬ [Qi+1(x) ⊕ (¬∃Pi. Pi(ɛPi) 
∧ x=ɛPi )]" is a typed formula. 
 

Now the above rules will recursively form typed 

formulas, and typed predicates. 

 

Axiom: if Pi,Qj are typed predicates, then: 

 

ɛPi=ɛQj iff (∀x. Pi(x)↔Qj(x)) 

 

Define: x ∈ y iff ∃G. G(x) ∧ y=ɛG 
 

The motivation beyond extending predicates is to 

reduce object/predicate/higher predicate 

hierarchy into object/predicate dichotomy, thus 

enabling Rule 7. 

 

The above system have no mathematical motivation, 

it is solely derived by consistency concerns 

about second order logic with identity using 

purely logically motivated maxims. 

 

 

  

 



The above LOGIC have the ability to interpret 

second order arithmetic, thus most of traditional 

mathematics can be seen to be traced to logic, 

thereby highly motivating Logicism. 
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