Language: FOL + Primitive binary relations: "is a part of" denoted by p and "is collected by" denoted by @.

Axiom: $(\forall x. x p y \Rightarrow x p z) \Rightarrow y p z$ Axiom: $x p y \land y p z \Rightarrow x p z$ Define (=): $x=y \Leftrightarrow x p y \land y p x$ Define (pp): $x pp y \Leftrightarrow x p y \land \neg y p x$ Axiom: $x @ y \land z p x \Rightarrow z @ y$ Define (unit): unit(x) $\Leftrightarrow (\exists c. \forall y. y @ c \Leftrightarrow y p x) \land$ $(\neg \exists c, z. z pp x \land \forall y. y @ c \Leftrightarrow y p z)$

Axiom: unit(x) \land unit(y) \land x \neq y $\Rightarrow \neg \exists z. z p x \land z p y$

A particle is a proper part of a unit.

Define (collection): collection(x) \Leftrightarrow (\forall y. y p x \Rightarrow \exists c,z. z p y \land z p c \land unit(c) \land c p x)

Define (e): x e y \Leftrightarrow unit(x) \land x p y \land collection(y)

e is read as: is a trivial member of.

Axiom schema: if phi is a formula in which x is not free,

then $(\exists z.unit(z)phi \Rightarrow \exists x. \forall y. y \in x \Leftrightarrow unit(y)phi)$ is an axiom.

Define [|]: $y=[x|phi] \Leftrightarrow collection(y) \land (\forall x. x e y \Leftrightarrow unit(x)phi)$

Define (precollector): precollector(x) $\Leftrightarrow \exists y. y @ x$

Define (collector): collector(x) \Leftrightarrow unit(x) $\land \exists y. y @ x$

A proper precollector is a precollector that is not a unit.

A class is a collection of collectors where distinct collectors do collect distinct collections.

Define (class): class(x) \Leftrightarrow collection(x) \land (\forall y. y e x \Rightarrow collector(y)) \land (\forall y,z. y e x \land z e x \land y \neq z \Rightarrow \exists u,w. u=[k| k @ y] \land w=[k| k @ z] \land u \neq w)

For every collector x the collection $[y|\ y @ x]$ is called

the *extension* of x, and x is its *exclusive* collector.

When this extension is a class, it's called

```
a *class extension* of x.
```

A set is a class extension of a collector.

Epsilon membership is defined as:

 $x \in y \Leftrightarrow class(y) \land \exists z. \ collector(z) \land x = [u| \ u @ z] \land z \ e \ y.$

This explains those terms in standard set\class theories.

However in set theories it is sufficient to interpret sets as collectors and epsilon membership as "is a unit collected by the collector".

Zuhair Al-Johar, 21/5/2011